ОГЛАВЛЕНИЕ

	Cmp.
Предисловие рецензента	9
От авторов	11
ГЛАВА І. Современные методы теоретических расчетов	
и методика экспериментальных исследований систем	15
атомарный водород-металл	13
1. Обсуждение методических подходов, используемых для	
интерпретации экспериментальных результатов при	15
исследовании систем Ме-Н	_
Введение.	15
Особенности образования и строения сплавов	1.6
внедрения	16
Гетерогенные реакции.	18
Топохимия реакций металл - водород	21
Влияние давления и температуры	25
Модель Пика-Зонненберга	27
Процессы на поверхности	30
Энергия активации диссоциации водорода на	22
поверхности	32
2. Статистические теории исследования сплавов	36
Метод Горского-Брэгга-Вильяма	37
Метод дифференциальной геометрии	38
Квазихимический метод	39
Метод Кирквуда	40
3. Особенности подготовки экспериментальных образцов	
и методика их исследования при изучении систем	
атомарный водород - металл	41
Предварительная подготовка образцов	42
Реакционная система	42
Аналитические методы	43
Метод плазмохимической термогравиметрии	43
Экспериментальная установка	45
Кинетический метод исследования	
гидридообразования в переходных металлах	48
Литература к главе I	52
ГЛАВА II. Расчет растворимости компонента	
внедрения	57
4. Растворимость примеси внедрения в сплаве АВ	
структуры В8 ₁ , В31	58

Расчет свободной энергии	58
Оценка растворимости	62
5. Примесь внедрения в сплавах структуры В19	66
Растворимость примеси в металле А	67
Бинарный сплав с малой концентрацией примеси	70
6. Примесь внедрения в сплавах АВ ₃ ГЦК	
структуры L1 ₂ . Влияние примеси на	
энергетическое состояние сплава	72
Свободная энергия сплава	73
Равновесное распределение внедренных атомов	75
Исследование энергетических состояний кристалла	78
Растворимость примеси внедрения	87
Сравнение результатов расчетов с экспериментальными	
данными	91
7. Растворимость водорода в некоторых	
гидридообразующих сплавах и металлах	97
Структурные особенности	99
Термодинамический потенциал. Уравнение	
равновесия. Растворимость водорода	101
Обсуждение результатов. Сопоставление с	
экспериментом	103
Изотермы растворимости водорода в фазах	
постоянного состава	105
Изотермы растворимости водорода в	
трехкомпонентной матрице переменного состава	108
Изоплеты растворимости водорода в	
сплавах-накопителях	112
Изоплеты растворимости водорода в	
междоузлиях двух типов	117
8. Адсорбция водорода на рутении. Изостеры	
растворимости адсорбированного водорода	120
Свободная энергия поверхности кристалла.	
Уравнения равновесия. Растворимость	
адсорбированного водорода	121
Расчет изотерм и изобар	125
Расчет изостер	131
9. Взаимное влияние растворимости примесей внедрения	135
Свободная энергия сплава. Уравнения равновесия	136
Растворимость примесей внедрения в	
неупорядоченном сплаве	140
Растворимость примесей внедрения в	
максимально упорядоченном сплаве	144

Растворимость примесей внедрения G, D	
при разных температурах сплава АВ	
Сопоставление результатов теории с	
экспериментальными данными	
Литература к главе II	
ГЛАВА III. Перераспределение атомов внедрения по	
поверхностным и объемным позициям	
10. Температурное перераспределение внедренных атом	
на свободной поверхности грани (111)	
Энергии и концентрации атомов внедрения	
Кинетические уравнения	· • • • •
Равновесное распределение внедренных атомов	
в металле	• • • • • •
Равновесное распределение внедренных атомов в	
упорядочивающемся сплаве	
Исследование кинетики перераспределения	
внедренных атомов в металлических пленках	• • • • • • •
Кинетика перераспределения атомов внедрения в	
пленках сплава АВ. Время релаксации процесса	,
Сопоставление расчетных формул	
с экспериментальными данными	• • • • •
11. Атомы внедрения в окта- и тетраэдрических	
междоузлиях ОЦК кристаллов со свободной	
поверхностью	• • • • •
Равновесное распределение атомов внедрения в	
кристалле с поверхностью грани (001)	
Влияние толщины кристалла на распределение	
атомов внедрения. Эффект поверхностной	
сегрегации	
Атомы внедрения в кристалле с поверхностью	
грани (001). Время релаксации	
Атомы внедрения в кристалле с	
поверхностью грани (111)	
12. Поверхностное и объемное распределение атомов	
внедрения в металле под давлением	
Объемный эффект, обусловленный давлением	
Распределение внедренных атомов при	
больших числах заполнения	
Учет объемных эффектов, обусловленных	
внедрением и давлением	
Литература к главе III	

ГЛАВА IV. Теоретические исследования фазовых	
превращений в металлогидридах	211
13. Атомное упорядочение в сплаве Nb₃Sn,	
инициируемое примесью водорода.	
Растворимость водорода	211
Постановка задачи	212
Атомный порядок в сплаве А ₃ В с примесью С	215
Растворимость примеси С в сплаве А ₃ В	221
Концентрационная зависимость растворимости	
примеси в неупорядоченном сплаве	223
Температурная зависимость растворимости	
примеси в неупорядоченном сплаве	227
Влияние атомного порядка на растворимость	
примеси в сплаве	228
Литература к главе IV	232
ГЛАВА V. Фазовые превращения в титане и цирконии при	
их взаимодействии с водородом	235
Введение	
V.1. Теоретические расчеты	236
14. Превращения $\alpha \leftrightarrow \beta \leftrightarrow \gamma$ в титане и цирконии,	
инициируемые водородом	236
Свободная энергия α-фазы	
Свободная энергия β-фазы	
Свободная энергия ү-фазы	
Анализ и обсуждение результатов расчетов	
свободных энергий α-, β-, γ-фаз. Построение	
фазовой диаграммы	247
15. Превращения $\gamma \leftrightarrow \delta \leftrightarrow \varepsilon$ в гидридах титана и циркония	
Теория	
Анализ и обсуждение результатов.	
Построение фазовой диаграммы	258
Диаграмма состояния с учетом переходов α-β-γ-δ-ε	
Литература к главе V.1	269
· · · · · · · · · · · · · · · · · ·	
V.2. Экспериментальные исследования процессов	
взаимодействия металла с водородом. Фазовые	
превращения в титане и цирконии	271
16.1. Взаимодействие циркония с водородом. Фазовые	
превращения	271
Общие сведения	271

Аттестация образцов и условия проведения	
Экспериментов	• • • • •
Вклад поверхностных и диффузионных процессов	
в кинетику процесса взаимодействия водорода с	
цирконием	
Взаимодействие циркония с атомарным водородом	
Твердофазные превращения в цирконии,	
инициируемые увеличением концентрации	
водорода в объеме образца	• • • • •
Влияние поверхностных пленок на взаимодействие	
циркония с водородом	
Зависимость скорости фазовых превращений от	
содержания примесей в объеме образца	
16.2. Экспериментальное изучение фазовых превращени	
в гидриде титана	
Гидриды титана	.
Условия эксперимента	
Фазовые превращения в титане, инициируемые	
увеличением концентрации водорода в объеме	
Литература к главе V.2.	
ТАВА VI. Исследования сплавов внедрения на основе	
уллеритов. Особенности фазовых превращений	
17. Водород в фуллеритах	
17.1. Особенности образования гидрофуллеритов	
а) Решеточный водород	
б) Фуллерированный водород	
17.2. Экспериментальные исследования	• • • • •
водородсорбционных свойств фуллеритов	
Методы синтеза гидрофуллеритов	
Гидрирование механических смесей	
Взаимодействие водорода с металлофуллеридами	
Гидрирование фуллеритов атомизированным	••••
водородом	
Жидкофазное гидрирование	
± ± ±	
Другие особенности взаимодействия фуллеритов с	
водородом (дейтерием)	
17.3. Структурные превращения при гидрировании	 .
фуллерита. Растворимость водорода в решетке фуллерит	
Свободная энергия ПК и ОЦК фаз	••••
Температура фазового перехода ПКР→ОЦКР.	
Диаграмма состояния системы	

Растворимость водорода в ОЦК фазе	373
18. Фуллериды металлов	376
18.1. Исследование фазового перехода ГЦК→ОЦК в	
фуллеридах металлов	377
Свободная энергия ГЦК фазы. Уравнения	
термодинамического равновесия	378
Свободная энергия ОЦК фазы. Уравнения	
термодинамического равновесия	383
Обсуждение результатов расчетов	385
18.2. Сверхпроводящий порядок в фуллеридах	
щелочных металлов	392
Свободная энергия кристалла	393
Расчет уравнений равновесия	400
Оценка температуры спинового упорядочения	401
Литература к главе VI	407