СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ РЕЦЕНЗЕНТОВ	9
OT ABTOPOB	
ПРЕДИСЛОВИЕ	.13
ГЛАВА І. ФАЗОВЫЙ ПЕРЕХОД АТОМНЫЙ ПОРЯДОК-ПОРЯДОК	
$L1_1 \stackrel{\rightarrow}{\leftarrow} L1_0$ (ГЦР $\stackrel{\rightarrow}{\leftarrow}$ ГЦТ) ТИПА CuPt $\stackrel{\rightarrow}{\leftarrow}$ CuAu	15
Свободные энергии фаз	.15
ГЦР фаза	
ГЦТ фаза	
Уравнения равновесия. Температура фазового перехода	
Обсуждение результатов расчетов. Диаграмма состояния	
Литература к главе I	.27
ГЛАВА II. ПОЭТАПНОЕ АТОМНОЕ УПОРЯДОЧЕНИЕ	
$A1 \rightarrow L1_2 \rightarrow L1_2^*$ В СПЛАВАХ FePd _{3-X} Au _X	.29
Свободная энергия. Уравнение равновесия фазы L1 ₂ ,	
температура перехода $A1 \rightarrow L1_2$ сплава $AB_{3-X}C_X$.31
Свободная энергия. Уравнение равновесия фазы $L1_2^*$,	
температура перехода $L1_2 \to L1_2^*$ сплава $AB_{3-x}C_x$.34
Анализ полученных результатов. Сравнение с экспериментом	.36
Свободные энергии фаз A1, $L1_2$, $L1_2^*$	
Параметры порядка фаз $L1_2$, $L1_2^*$	
Температуры упорядочения фаз $L1_2$, $L1_2^*$. Диаграмма	
состояния	45
Литература к главе II	
ГЛАВА III. СВЕРХСТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ G5 → DO ₁₉	12
(ГЦК $_{\leftarrow}^{\rightarrow}$ ГПУ), СТИМУЛИРОВАННЫЕ ПРИМЕСЬЮ	
	~ 1
ВНЕДРЕНИЯ Свободные энергии сплава A_3BD_X с ГЦК и ГПУ решетками) I 1
Атомный порядок и равновесная концентрация примеси D Фазовый переход G5 $\stackrel{\rightarrow}{\leftarrow}$ DO ₁₉ (ГЦК $\stackrel{\rightarrow}{\leftarrow}$ ГПУ)	
· · · · · · · · · · · · · · · · · · ·	
Диаграмма состояния	.00
ГЛАВА IV. АТОМНОЕ УПОРЯДОЧЕНИЕ В СПЛАВАХ А ₃ ВС _х	04
СТРУКТУРЫ А15 ТИПА Ст ₃ Si	65
Постановка задачи	
Конфигурационная энергия. Свободная энергия.	
Атомный порядок	.69
Растворимость примеси С по методу средних энергий	
Растворимость примеси С по методу конфигураций	

Концентрационная зависимость растворимости	
примеси в неупорядоченном сплаве	77
Температурная зависимость растворимости примеси в	
неупорядоченном сплаве	81
Влияние атомного порядка на растворимость примеси.	
Литература к главе IV	
ГЛАВА V. СВЕРХСТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В8 ₁ → С6	
ТИПА NiAs $_{\leftarrow}^{\rightarrow}$ CdI $_2$ В СПЛАВАХ ПРИ ФОРМИРОВАН	ИИ
СТРУКТУРНЫХ ВАКАНСИЙ	89
Расчет свободных энергий фаз	
Фаза типа NiAs	
Фаза типа CdI_2	
Оценка температуры и концентрационной области гомогенно	ости
сверхструктурных превращений	
Сопоставление расчетов с экспериментальными данными	
соединений \widehat{CoSe}_{1+X} , \widehat{CoTe}_{1+X} , \widehat{NiSe}_{1+X}	.100
Литература к главе V	
ГЛАВА VI. ФАЗОВОЕ РАССЛОЕНИЕ DO ₃ →G5→B4+D1+A1	
УПОРЯДОЧИВАЮЩИХСЯ ЖЕЛЕЗО-	
АЛЮМИНИЕВЫХ СПЛАВОВ ПРИ АЗОТИРОВАНИИ	.105
Структуры фаз. Параметры порядка. Энергии	
взаимодействия атомов	
Свободные энергии фаз. Уравнения равновесия	108
Φ аза Fe_3AIN	.109
Фаза AlN	.110
Φ аза Fe_4N	.111
Фаза Fe ₄	.111
Анализ результатов расчетов	
Литература к главе VI	.117
ГЛАВА VII. ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В УГЛЕРОДНЫХ	
МАТЕРИАЛАХ	
Алмаз. Расчет свободной энергии	
Графит. Свободная энергия	
Карбин. Расчет свободной энергии	
Свободная энергия карбина K_1	
Свободная энергия карбина K_2	
Свободная энергия карбина К ₃	
Фуллерит. Свободная энергия фуллерита	
Обсуждение результатов теории. Сравнение с экспериментом	
Температура и давление упорядочения. Диаграмма состояния	
Литература к главе VII	.150

ГЛАВА VIII. СТРУКТУРНЫЙ ФАЗОВЫЙ ПЕРЕХОД ГЦК-ОЦК	В
ФУЛЛЕРИДАХ МЕТАЛЛОВ	
Свободная энергия ГЦК фазы. Уравнения	
термодинамического равновесия	.158
Свободная энергия ОЦК фазы. Уравнения	
термодинамического равновесия	.162
Обсуждение результатов расчетов	164
Литература к главе VIII	171
ГЛАВА ІХ. СТРУКТУРНОЕ ПРЕВРАЩЕНИЕ ПКР-ОЦКР ПРИ	
ГИДРИРОВАНИИ ФУЛЛЕРИТА	173
Свободные энергии ПК и ОЦК фаз	174
Температура фазового перехода ПКР-ОЦКР. Диаграмма	
состояния системы	.180
Растворимость водорода в ОЦК фазе	183
Литература к главе IX	187
ГЛАВА X. СТРУКТУРНЫЙ ФАЗОВЫЙ ПЕРЕХОД В1 $ ightarrow$ L1 $_2$	
(ПК \rightarrow ГЦК) В СМЕШАННОМ ТВЕРДОФАЗНОМ	
ФУЛЛЕРИТЕ С ₆₀ -С ₇₀	193
Свободные энергии фаз	196
Свободная энергия ПК фазы	197
Свободная энергия ГЦК фазы типа $L1_2$	
Свободная энергия ГЦК фазы типа $L1_0$	200
Обсуждение результатов расчетов. Построение диаграммы	
состояния фуллерита	201
Конфигурационная теплоемкость фуллерита в области	
фазового перехода ПКР-ГЦКР	207
Интерпретация результатов расчетов теплоемкости	209
Литература к главе Х	215
ГЛАВА XI. СВЕРХПРОВОДЯЩЕЕ УПОРЯДОЧЕНИЕ В	
ФУЛЛЕРИДАХ ЩЕЛОЧНЫХ МЕТАЛЛОВ	
Определение свободной энергии	
Уравнения термодинамического равновесия	
Температура спинового упорядочения	227
Сравнение с экспериментом. Оценка энергетических	
параметров	229
Литература к главе XI	233
ГЛАВА XII. ЗАРЯДОВОЕ УПОРЯДОЧЕНИЕ В КРИСТАЛЛАХ	
ГЕКСАГОНАЛЬНОЙ СТРУКТУРЫ С6	
Постановка задачи	236
Параметр порядка. Вероятности замещения узлов	
атомами. Числа атомных пар	
Конфигурационная энергия	.241
Критерий энергетической выгодности зарядово-	
упорядоченного состояния	244

Термодинамическая вероятность. Свободная энергия	.245
Равновесный параметр зарядового порядка	
Температура Вервея. Влияние примеси на температуру	
упорядочения	.248
Характер распределения атомов примеси и его влияние на	
температуру упорядочения	251
Сравнение теории с экспериментом. Оценка параметров	
теории	254
Литература к главе XII	
ГЛАВА XIII. ФЕРРОМАГНИТНЫЙ ПОРЯДОК В	00
РАСПАДАЮЩИХСЯ СПЛАВАХ С ГПУ РЕШЕТКОЙ	263
Структурная и магнитная свободные энергии сплава	
Уравнения термодинамического равновесия. Температура	205
распада. Температура Кюри	266
Обсуждение результатов расчетов. Сравнение с	200
экспериментом	268
Литература к главе XIII	
ГЛАВА XIV. ФЕРРО- И АНТИФЕРРОМАГНЕТИЗМ В	213
РАСПАДАЮЩИХСЯ СПЛАВАХ ГПУ СТРУКТУР.	277
, , , , , , , , , , , , , , , , , , , ,	
Параметры распада и намагниченности	
Свободная энергия	
Уравнения равновесия	
Обсуждение уравнений равновесия	
Сравнение с экспериментом	
Литература к главе XIV	292
ГЛАВА XV. ФЕРРО- И АНТИФЕРРОМАГНЕТИЗМ	
АТОМНОУПОРЯДОЧИВАЮЩИХСЯ СПЛАВОВ С	
СТРУКТУРАМИ В8 ₁ и В19	293
Структуры сплавов. Параметры атомного и магнитного	20.5
порядков	
Свободная энергия сплава структуры В8 ₁	
Уравнения равновесия	
Температуры Курнакова, Кюри, Нееля	301
Частные случаи ферро- и антиферромагнетизма. Взаимное	
влияние атомного упорядочения и магнетизма	
Исследование фазы В19. Диаграммы состояния	
Литература к главе XV	
ГЛАВА XVI. ВЛИЯНИЕ ПРИМЕСИ И АТОМНОГО ПОРЯДКА	HA
НАМАГНИЧЕНИЕ БИНАРНЫХ СПЛАВОВ	
СТРУКТУРЫ D8 ₅	
Теория	315
Обсуждение результатов теории. Сопоставление с	
экспериментальными данными	321

Бинарный сплав A_7B_6	321
Тройной сплав $A_7 B_{6-X} C_X$	
Литература к главе XVI	
ГЛАВА XVII. МАГНЕТИЗМ И БЛИЖНЕЕ УПОРЯДОЧЕНИЕ В	
АМОРФНОМ КОНДЕНСАТЕ ИЗ ПОЛЫХ И	
ЭНДОЭДРАЛЬНЫХ ФУЛЛЕРЕНОВ	333
Теория	
Интерпретация результатов расчетов	
Литература к главе XVII	
ГЛАВА XVIII. ДИПОЛЬНОЕ УПОРЯДОЧЕНИЕ В КРИСТАЛЛА	λX
СТРУКТУРЫ G5 ТИПА ПЕРОВСКИТА	
Свободная энергия кристалла. Энергия упорядочения	
Параметр дипольного порядка. Температура Кюри	
Конфигурационная теплоемкость	
Литература к главе XVIII	
ГЛАВА ХІХ. ФЕРРО- И АНТИФЕРРОЭЛЕКТРИЧЕСКИЙ ПОРЯ	ІДКИ
В КРИСТАЛЛАХ СТРУКТУРЫ DO ₉	
Теория	
Иллюстрация результатов теории для кристалла WO ₃	
Литература к главе XIX	
ГЛАВА ХХ. ФАЗОВОЕ ПРЕВРАЩЕНИЕ ПАРАЭЛЕКТРИК-	
ФЕРРОЭЛЕКТРИК В КDР КРИСТАЛЛАХ	
(СТРУКТУРЫ Н ₂₂)	391
Структура KDP кристаллов. Параметры порядка	
Свободная и внутренняя конфигурационная энергия.	
Уравнения термодинамического равновесия. Температура	l
Кюри	
Конфигурационная теплоемкость	405
Термодинамический потенциал. Зависимость параметра	
порядка от напряженности электрического поля	406
Диэлектрическая восприимчивость	408
Литература к главе XX	412
ГЛАВА XXI. ФАЗОВЫЙ ПЕРЕХОД ПАРАЭЛЕКТРИК-	
АНТИФЕРРОЭЛЕКТРИК В ADP КРИСТАЛЛАХ .	415
Структура кристалла в пара- и феррофазе. Параметры	
поляризационного порядка	417
Свободная энергия. Уравнения равновесия. Параметр	
антиполяризационного порядка	420
Конфигурационная теплоемкость	
Термодинамический потенциал системы. Параметр дипольн	ЮГО
порядка, как функция напряженности электрического	
поля. Диэлектрический гистерезис	429
Диэлектрическая восприимчивость	431
Литература к главе XXI	435

ГЛАВА ХХІІ. ВЛИЯНИЕ ПРИМЕСИ НА ФАЗОВОЕ	
ПРЕВРАЩЕНИЕ В ADP КРИСТАЛЛАХ	437
Структура и параметры дипольного порядка. Вероятности	
смещений структурных комплексов	439
Внутренняя конфигурационная энергия	
Термодинамическая вероятность состояния	
Свободная энергия. Уравнения равновесия. Температура	
Кюри. Диаграмма состояния	446
Литература к главе XXII	
ГЛАВА ХХІІІ. ДИПОЛЬНОЕ УПОРЯДОЧЕНИЕ В СМЕШАННІ	ЫХ
KDP И ADP КРИСТАЛЛАХ ДИГИДРОФОСФАТ	A
КАЛИЯ-АММОНИЯ	
Структура кристалла. Параметры порядка	458
Внутренняя конфигурационная энергия	
Термодинамическая вероятность состояния. Свободная	
энергия. Уравнения равновесия. Диаграмма состояния	466
Термодинамический потенциал. Модуль сдвига.	
Диэлектрическая восприимчивость	470
Литература к главе XXIII	
ГЛАВА XXIV. ДЕФОРМАЦИОННОЕ УПОРЯДОЧЕНИЕ В	
КРИСТАЛЛАХ СТРУКТУРЫ Н4 ТИПА ШЕЕЛИТА	4477
Структура кристалла в пара- и феррофазе. Параметры	
деформационного порядка	480
Свободная энергия. Уравнения равновесия	
Термодинамический потенциал. Деформационный	
гистерезис	488
Литература к главе XXIV	495
ГЛАВА XXV. ДЕФОРМАЦИОННЫЙ ПОРЯДОК И СВОЙСТВА	4
КРИСТАЛЛОВ СО СТРУКТУРОЙ G5 ₁	499
Параметры порядка. Числа атомных пар. Энергии	
взаимодействия атомов	500
Внутренняя конфигурационная энергия феррофазы.	
Термодинамическая вероятность состояния	504
Свободная энергия. Уравнения равновесия. Температура	
Кюри-Вейсса	505
Термодинамический потенциал. Исследование	
деформационного параметра порядка	507
Деформационный гистерезис	
Конфигурационная теплоемкость	
Упругая податливость и модуль продольной упругости	
Литература к главе XXV	