РАСТВОРИМОСТЬ ПРИМЕСЕЙ В МЕТАЛЛАХ, СПЛАВАХ, ИНТЕРМЕТАЛЛИДАХ, ФУЛЛЕРИТАХ

СОДЕРЖАНИЕ

Предисловие рецензента	9
От авторов	11
ПРЕДИСЛОВИЕ	13
Литература к предисловию	23
ГЛАВА І. РАСТВОРИМОСТЬ ПРИМЕСЕЙ ВНЕДРЕНИЯ	27
1. ПРИМЕСЬ ВНЕДРЕНИЯ В КРИСТАЛЛАХ ГПУ СТРУКТУР.	28
Сплавы типа NiAs и MnP	29
Сплавы типа MgCd	37
Сплавы типа Ni ₃ Sn	44
Общая формула растворимости примеси внедрения	
в сплавах AB-C _{BH} и AB ₃ -C _{BH}	49
Сравнение теории с экспериментальными данными	53
Литература к разделу 1	60
2. РАСТВОРИМОСТЬ АДСОРБИРОВАННОГО ВОДОРОДА	
НА ГРАНИ (0001) КРИСТАЛЛА С ГПУ РЕШЕТКОЙ АЗ	65
Свободная энергия	65
Уравнения равновесия	68
Расчет изотерм и изобар	70
Расчет изостер	76
Заключение	79
Литература к разделу 2	80
3. РАСТВОРИМОСТЬ ВОДОРОДА В СПЛАВАХ-	
НАКОПИТЕЛЯХ СТРУКТУРЫ D2d И ДРУГИХ	
МЕТАЛЛАХ И СПЛАВАХ	83
Постановка задачи	84
Термодинамический потенциал. Уравнения равновесия.	0.1
Растворимость водорода	86
Обсуждение результатов. Сопоставление	
с экспериментом	90
Изотермы растворимости водорода в фазах	
постоянного состава	91
Изотермы растворимости водорода в трех-	
компонентной матрице переменного состава	95
Изоплеты растворимости водорода	98
Изоплеты растворимости газов в металлах и сплавах	
произвольной структуры и любого состава	102
Заключение	107
Литература к разделу 3	108

4. ВОДОРОД В ФУЛЛЕРИТАХ
Свободная энергия ПК и ОЦК фаз
Температура фазового перехода ПКР→ОЦКР.
Диаграмма состояния системы
Растворимость водорода в ОЦК фазе
Заключение
Свободная энергия ГЦК гидрофуллерита. Уравнения равновесия.
Растворимость водорода в однокомпонентном фуллерите.
Распределение атомов водорода в октаэдрических и
тетраэдрических междоузлиях однокомпонентного фуллерита.
Распределение атомов водорода по тригональным и
бигональным междоузлиям однокомпонентного фуллерита
Малая концентрация атомов водорода в смешанном
фуллерите Ф1 - Ф2
Зависимость растворимости водорода от состава
фуллерита и температуры при распределении
атомов водорода в междоузлиях тетраэдрических,
тригональных и бигональных
Заключение
Литература к разделу 4
5. РАСПРЕДЕЛЕНИЕ И ПЕРЕРАСПРЕДЕЛЕНИЕ АТОМОВ
ВОДОРОДА В МЕЖДОУЗЛИЯХ ТРЕХ ТИПОВ
УПОРЯДОЧИВАЮЩИХСЯ СПЛАВОВ СТРУКТУРЫ L12
Свободная энергия
Равновесное распределение атомов водорода
Растворимость водорода
Кинетика перераспределения атомов водорода
Заключение
Литература к разделу 5
6. ФОРМИРОВАНИЕ БИКОМПЛЕКСИЙ И КРАУДИОНОВ
ВНЕДРЕНИЯ
Бикомплексии в сплаве
Расчет свободной энергии
Условия равновесного состояния сплава.
Растворимость примеси
Анализ полученных результатов
Краудионы внедрения в сплавах

Свободная энергия сплава. Равновесное	
распределение атомов внедрения	198
Исследование энергетического состояния	
кристалла	201
Растворимость примеси внедрения	210
Заключение	216
Литература к разделу 6	217
7. НАЛИЧИЕ ДВУХ ПРИМЕСЕЙ ВНЕДРЕНИЯ.	
ВЗАИМНОЕ ВЛИЯНИЕ ИХ РАСТВОРИМОСТЕЙ	221
Свободная энергия сплава	222
Уравнения термодинамического равновесия. Расчет	
растворимостей примесей	227
Растворимость примесей в неупорядоченном	
сплаве	228
Растворимость примесей в максимально	
упорядоченном сплаве	232
Температурная зависимость растворимости	236
Сопоставление результатов теории с	
экспериментальными данными	238
Заключение	243
Литература к разделу 7	244
8. ПРИМЕСИ В КРИСТАЛЛАХ СО СТРУКТУРОЙ	
БОРИДА ЖЕЛЕЗА Fe ₂ B	247
Структура кристаллов (FeM) ₂ ВС	248
Свободная энергия сплава	
Растворимость бора и углерода	254
Анализ результатов расчетов	256
Литература к разделу 8	258
ГЛАВА II. ПРИМЕСЬ ЗАМЕЩЕНИЯ В КРИСТАЛЛАХ СТРУКТУР В8 ₁ И А15	261
9. РАСЧЕТ РАСТВОРИМОСТИ БЕЗ УЧЕТА КОРРЕЛЯЦИИ	262
,	262
Теория	269
Анализ полученных результатов	269
Растворимость примеси С в металле А	209
Растворимость примеси С в неупорядоченном	271
сплаве АВ	271
Растворимость компонента С в металле А,	272
содержащем примесь В малой концентрации	272
Растворимость примеси С в упорядочивающемся	274
сплаве АВ стехиометрического состава	274
Заключение	276
Литература к разделу 9	276

10. КВАЗИХИМИЧЕСКАЯ ГЕОРИЯ РАСТВОРИМОСТИ	27
Теория	279
Анализ уравнений растворимости. Сопоставление с	290
Экспериментальными данными	290
Растворимость примеси в металле	291
Растворимость примеси в неупорядоченном	29:
сплавеВлияние примеси В к металлу А на	<i>29</i> .
растворимость компонента С	29
Влияние дальнего порядка на растворимость.	<i>4)</i> .
Распределение примесных атомов на узлах	29
Влияние корреляции на растворимость	30
Заключение	30
Литература к разделу 10	30
11. ВОДОРОД В УПОРЯДОЧЕННЫХ ФАЗАХ А15	30
Постановка задачи	30
Атомный порядок в сплаве А ₃ ВС _х	31
Расчет растворимости примеси методом	<i>J</i> 1
средних энергий	31
Расчет растворимости примеси методом	<i>J</i> 1
конфигураций	31
Концентрационная зависимость растворимости	
примеси в неупорядоченном сплаве	31
Температурная зависимость растворимости	
примеси в неупорядоченном сплаве	32
Влияние порядка на растворимость примеси	32
Заключение	32
Литература к разделу 11	32
ГЛАВА III. ВЛИЯНИЕ ОБЪЕМНЫХ ЭФФЕКТОВ НА	
РАСТВОРИМОСТЬ	33
12. ПРИМЕСЬ ЗАМЕЩЕНИЯ В СПЛАВАХ ТИПА CsCl	33
Свободная энергия. Уравнения равновесия	33
Равновесная концентрация атомов примеси	33
Учет объемных эффектов	33
Растворимость примеси в неупорядоченном сплаве	34
Растворимость примеси в упорядоченном сплаве	34
13. ПРИМЕСЬ ВНЕДРЕНИЯ В ГЦК СПЛАВАХ	
ТИПА Cu ₃ Au	34
Размещение примесных атомов в октамеждоузлиях	34
Размещение примесных атомов в тетрамеждоузлиях	35
14. ПРИМЕСЬ ВНЕДРЕНИЯ В ОЦК СПЛАВАХ	35
	55

Примесь в сплавах типа CsCl	356
Примесь в сплавах типа F ₃ Bi	360
Заключение	362
Литература к разделам 12, 13, 14	363
ГЛАВА IV. ВЛИЯНИЕ ВСЕСТОРОННЕГО ДАВЛЕНИЯ НА	265
PACTBOPИMOCTЬ	365
15. СПЛАВЫ ЗАМЕЩЕНИЯ ТИПА CsCl	365
Растворимость в неупорядоченном сплаве	368
Влияние атомного порядка	370
Заключение	373
Литература к разделу 15	374
16. ВОДОРОД В МЕТАЛЛАХ И СПЛАВАХ	375
Теория	375
Сравнение теории с экспериментальными данными	377
Литература к разделу 16	381
ГЛАВА V. ВЛИЯНИЕ МАГНЕТИЗМА НА РАСТВОРИМОСТЬ	383
17. ПРИМЕСЬ ЗАМЕЩЕНИЯ	384
ГЦК сплавы типа Cu ₃ Au	384
ОЦК сплавы типа CsCl	397
Сопоставление результатов расчетов с	
экспериментальными данными	406
Литература к разделу 17	411
18. ПРИМЕСЬ ВНЕДРЕНИЯ	417
Теория	418
Интерпретация результатов расчетов	424
Литература к разделу 18	428
19. ВЗАИМНОЕ ВЛИЯНИЕ РАСТВОРИМОСТИ ТРЕТЬЕГО	
КОМПОНЕНТА И НАМАГНИЧЕННОСТИ В	
БИНАРНОМ ГПУ СПЛАВЕ СТРУКТУРЫ D85	431
Теория	
Обсуждение результатов теории. Сопоставление с	
экспериментальными данными	438
Бинарный сплав A ₇ B ₆	439
Тройной сплав $A_7B_{6-x}C_x$	443
Определение растворимости примеси в	
зависимости от намагниченности	446
Заключение	449
Литература к разделу 19	452
20. ВЗАИМНАЯ РАСТВОРИМОСТЬ ФАЗ БИНАРНОГО	
РАСПАДАЮЩЕГОСЯ ФЕРРОМАГНИТНОГО СПЛАВА	457

Теория	458
Температура распада. Температура Кюри Температура взаимной растворимости фаз	461
магнитного сплава	469
Литература к разделу 20	470
ГЛАВА VI. ДИПОЛЬНОЕ УПОРЯДОЧЕНИЕ В ДВУМЕРНОМ ФУЛЛЕРИТЕ И РАСТВОРИМОСТЬ	
ЭНДОМЕТАЛЛОФУЛЛЕРЕНОВ.	
РАССЛОЕНИЕ СМЕШАННОГО ФУЛЛЕРИТА С60-С70	473
21. РАСТВОРИМОСТЬ ЭНДОМЕТАЛЛОФУЛЛЕРЕНОВ В ДИПОЛЬНОУПОРЯДОЧЕННОЙ МОНОПЛЕНКЕ	4/3
ФУЛЛЕРИТА	473
Параметры дипольного порядка. Числа пар	4/3
ближайших эндометаллофуллеренов	476
Свободная энергия пленки эндоэдралов	477
Уравнения термодинамического равновесия.	4//
Температура Кюри	479
Растворимость эндоэдралов	482
Заключение	486
Литература к разделу 21	487
	707
22. КОНЦЕНТРАЦИОННЫЙ РАСПАД ТВЕРДОГО	
РАСТВОРА ФУЛЛЕРЕНОВ НА ФАЗЫ РАЗНЫХ	401
СТРУКТУР	491
Сверхструктуры молекулярного кристалла	492
Расчет фуллереновых пар	494
Свободная энергия ромбоэдрической фазы	497
Свободная энергия простой кубической фазы	499
Оценка энергетических параметров смешанного	
фуллерита. Температура фазового расслоения.	
Диаграмма состояния	501
Равновесные концентрации фуллеренов в	
двухфазовом фуллерите	505
Заключение	509
Литература к разделу 22	510